基于运动控制芯片 AFD-X05 的开放式五轴五联动数控系统的应用

关键字:

AFD-X05 FPGA SOC 五轴五联动 G 代码 运动控制器

摘要:

运动控制芯片 AFD-X05 是基 FPGA 实现的芯片,能够完成高速高精度的数控加工。其运动控制的稳定性和可靠性要比 DSP 系统或基于 DSP 技术的运动控制芯片如 MCX314 等要高一个等级。五轴五联动运动控制器支持大部分的 G 代码、M 代码和宏指令,也具有可组配、模块化和开放式等特点。特别是它支持五轴直线插补,可以用计算机编写大型的五轴联动复杂软件,通过五轴五联动运动控制器控制数控机床完成加工,促进国产中高档数控系统软件水平的提高。本文介绍用它来快速开发一套五轴铣床数控系统。

一、引言

当前,各种运动控制卡的二次开发的比较复杂。目前国内比较多的工程师都熟悉数控系统的 G 代码,在 ARM 32 位单片机和国产运动控制芯片 AFD-X05 的基础上,研制成的可执行 G 代码的五轴联动运动控制器,使得二次开发变简单了。应用这种支持五轴直线插补的高速高精度的运动控制器,再开发各种专用的数控系统,工程师们只需将精力放在大型的复杂的软件开发上面,完全不需要去了解硬件。

二、G代码五轴联动运动控制器的硬件系统

2.1 AFDX05 运动控制芯片

云山数控研发的 AFDX05 运动控制芯片,支持任意 2~5 轴直线插补,任意 2轴圆弧插补,多达 6级的运动指令缓冲区,特别适合高速多线段或圆弧连续插补的运动控制,另外,还有反向间隙补偿,速度控制,加减速控制,位置控制,通用输入输出口,8/16 位数据总线,中断发生,硬件限位,软件限位,紧急停止,暂停,编码器信号输入等功能,驱动脉冲频率高达8MPPS、插补精度±5LSB。用于控制以脉冲序列方式输入的伺服电机、步进电机。

"中国芯"AFDX05,更加符合中国人的使用习惯。可以控制最多5轴的点位运动、连续轨迹运动、同步运动等应用。

2.2 ARM 32 位单片机

CPU 为 S3C44B0X。32M Flash。 脉冲方向差动输出驱动。60 路光耦隔离输入42 路集电极开路光耦隔离输出 或 36 路光耦隔离输入20 路集电极开路光耦隔离输出。5 路步进/伺服电机脉冲光耦隔离输出,最高频率4MHz。32 位逻辑位置和实际位置计数器。RS232 通讯。硬件部分已模块化,无需任何硬件知识即可开发。

三、G代码五轴联动运动控制器的软件系统

3.1 支持的 G 代码

- 24000	- 1 4 5	
G 代码	分组	功能
*G00	1	定位(快速移动)
*G01	1	直线插补(进给速度)

G02	1	顺时针圆弧插补
G03	1	逆时针圆弧插补
G04	0	暂停,精确停止
*G17	2	选择X平面
G18	2	选择Z平面
G19	2	选择Y平面
G27	0	返回并检查参考点
G28	0	返回参考点
G29	0	从参考点返回
G30	0	返回第二参考点
*G40	7	取消刀具半径补偿
G41	7	左侧刀具半径补偿
G42	7	右侧刀具半径补偿
G43	8	刀具长度补偿 +
G44	8	刀具长度补偿 -
*G49	8	取消刀具长度补偿
G52	0	设置局部坐标系
G53	0	选择机床坐标系
*G54	14	选用 1 号工件坐标系
G55	14	选用2号工件坐标系
G56	14	选用3号工件坐标系
G57	14	选用 4 号工件坐标系
G58	14	选用5号工件坐标系
G59	14	选用6号工件坐标系
G60	0	单一方向定位
*G64	15	切削方式
G65	0	宏程序调用
G66	12	模态宏程序调用
*G67	12	模态宏程序调用取消
*G90	3	绝对值指令方式
*G91	3	增量值指令方式
G92	0	工件零点设定
*G98	10	固定循环返回初始点
G99	10	固定循环返回 R 点

3.2 支持的 M 代码

0:1 ×1343 043			
M 代码	功能		
MOO	程序停止		
MO1	条件程序停止		
M02	程序结束		
M03	主轴正转		
MO4	主轴反转		
M05	主轴停止		

M06	刀具交换	
M08	冷却开	
M09	冷却关	
M18	主轴定向解除	
M19	主轴定向	
M30	程序结束并返回程序头	
M50	备用输出1开	
M51	备用输出1关	
M52	备用输出2开	
M53	备用输出2开	
M54	备用输出3开	
M55	备用输出3开	
M56	备用输出 4 开	
M57	备用输出 4 开	
M98	调用子程序	
M99	子程序结束返回/重复执行	

3.2 宏指令编程

变量号	变量类型	功能
#0	"空"	这个变量总是空的,不能赋值。
		地方变量只能在宏中使用,以保持操作的结果,关闭电
		源时,地方变量被初始化成"空"。宏调用时,自变量分
#1~#33	地方变量	配给地方变量。
		公共变量可在不同的宏程序间共享。关闭电源时变量
		#100~#149 被初始化成"空",而变量#500~#531 保持数
#100~#149		据。公共变量#150~#199 和#532~#999 可以选用,但是当
#500~#531	公共变量	这些变量被使用时,纸带长度减少了8.5米。
		系统变量用于读写各种 NC 数据项,如当前位置、刀具补偿
#1000~	系统变量	值
#2000~#2059	10 输入	60 路光耦隔离输入信号

四、三轴铣床数控数控系统开发实例

4.1 参数初始化。

以下参数,五个轴,每个轴的都有。

参数名称	参数设置	参数单位
脉冲当量	P01=XXX.XXXXXX	毫米
G00 指令速度	P02=XXXX	毫米/分钟
G01 指令速度	P03=XXXX	毫米/分钟
G02 指令速度	P04=XXXX	毫米/分钟
G03 指令速度	P05=XXXX	毫米/分钟
起始速度	P06=XXXX	毫米/分钟

加速时间	P07=XXXX	毫秒
正向软限位	P08=XXXX	毫米
负向软限位	P09=XXXX	毫米
反向间隙补偿	P10=XXXX	毫米
回零速度	P11=XXXX	毫米/分钟
手动速度	P12=XXXX	毫米/分钟
最大进给速度	P13=XXXX	毫米/分钟
系统总刀数	P14=XX	
M 代码等待时间	P15=XXXX	毫秒
回参考点坐标	P16=XXX.XXXXXX	毫米
主轴编码器线数	P17=XXXX	(/R)
归零方向	P18=X	
换刀基准位	P19=XXX.XXXXXX	毫米
换刀安全高度	P20=XXX.XXXXXX	毫米
换刀间隔	P21=XXX.XXXXXX	毫米
换刀速度	P22=XXX.XXXXXX	毫米/分钟
最大行程	P23=XXX.XXXXXX	毫米
设置工件坐标系	P25=XXX.XXXXXX	毫米

4.2 发送 G 代码,控制机床工作。如:

G54

M03 X8

G0 G90 G17

G28

G00X-2.046Y59.111Z10.000

Z4.000

G01Z-1.000F300

G17

G02X1.245Y54.864I-54.422J-45.566K0.000F800

X2.203Y53.318I-15.407J-10.613K0.000

G00Z10.000

G91 G28 M09

五、小结。

基于该开放式五轴五联动数控系统平台做开发,只需要将 G 代码传送到这个平台,可以快速开发出一套基于国际标准 G 代码加工的专用数控系统。应用开发工程师在完全不需要了解硬件的情况下,集中精力做好特定的行业专用数控系统。降低数控系统的开发成本,促进数控机床的普及应用。